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Abstract. Multi-Context Systems (MCS) model in Computational Logic dis-
tributed systems composed of heterogeneous sources, or “contexts”, interacting
via special rules called “bridge rules”. In this paper we consider how to enhance
flexibility and generality of such systems; in particular, we discuss aspects that
might be improved to increase practical applicability.

1 Introduction

Multi-Context Systems (MCSs) have been proposed in Artificial Intelligence and
Knowledge Representation to model information exchange among several diverse
sources [1, 2, 3]. MCSs are designed so as to deal with heterogeneous sources: in fact,
the approach explicitly considers their different representation languages and seman-
tics. Heterogeneous sources are called “contexts” (or, equivalently, we will call them
“sources”, or “modules”), and interact through special inter-context rules called bridge
rules, similar in format to datalog rules with negation !.

The reason why MCSs are particularly interesting is that they aim at modeling in a
formal way real applications requiring access to sources distributed on the web. Among
the relevant domains where the adoption of MCSs can bring real advances is for instance
health care (see, e.g., the running example in [6]). In view of such practical applications
it is important to notice that, being logic-based, contexts may encompass logical agents,
to which MCSs have in fact already been extended (cf. [7, 8]).

Despite the importance of MCSs for practical knowledge representation and reason-
ing, their definition is under some aspects too abstract, and the functioning modalities
of such systems are considered under ideal circumstances. In this paper we try to tackle
in a formal way the practical aspects related to these systems, and attempt at a system-
atization that should also provide guidelines for implementations. The paper proposes
some substantial technical improvements concerning bridge rules, also in relation to the
evolution of an MCS over time.

The paper is organized as follows. In Section 2 we introduce Multi-Context Sys-
tems. In Section 3 we propose a motivating application scenario, and with respect to
such scenario we outline some aspects where the original MCS definition is not fully
adequate in practice. In Section 4 we propose some variations, enhancements and ex-
tensions to the basic approach, that introduce improvements concerning these aspects.
Finally, in Section 5 we conclude.

' ¢f. [4, 5] for standard datalog, logic programming and prolog terminology.



2 Bridge Rules and Multi-Context Systems: Background

Heterogeneous Multi-Context systems have been introduced in the seminal work of
[9] in order to integrate different inference systems without resorting to non-classical
logical systems.

Later, the idea has been further developed and generalized to non-monotonic rea-
soning domains in [1, 2, 6, 3] and other related papers. There, (managed) Multi-Context
systems aim at making it possible to build systems that need to access multiple possi-
bly heterogeneous data sources, called “contexts”, by modeling the necessary informa-
tion flow via “bridge rules”, whose form is similar to datalog rules with negation (cf.,
e.g., [5]). Bridge rules allow for inter-context interaction: in fact, each element in their
“body” explicitly includes the indication of the context from which information is to be
obtained.

In order to account for heterogeneity, each context is supposed to be based on its
own logic. Reporting from [2], a logic L is a triple (K B; Cnp; ACCY,), where K By,
is the set of admissible knowledge bases of L, that are sets of K B-elements (“for-
mulas”); underlying (though here implicitly) there is a signature X';, including sets of
constants, predicate and function symbols, and a set of variables; K B, elements are
thus specified over this signature and involve terms that can be either variables or con-
stants or compound terms built out of function symbols and other terms; atoms are
defined as the application of a predicate over a set of terms, according to the predicate’s
arity; a term/atom/formula is “ground” if there are no variables occurring therein; a
logic is relational if in its signature the set of function symbols is empty, so its terms
are variables and constants only. Cny, is the set of possible sets of consequences of
knowledge bases in K By ; sets in C'ny, can be called “belief sets” or “data sets”, as
their elements are data items or “beliefs” or “facts”, that we assume to be ground. The
function ACCy, : KBy — 2°"t defines the semantics of L by assigning to each
knowledge base “acceptable” sets of consequences; so, only some (or possibly none) of
the possible sets of consequences in C'nj, are acceptable.

A multi-context system (MCS) M = (C4,...,C,) is a collection of contexts C; =
(L;; kb;; br;) where L; is a logic, kb; € KBy, is a knowledge base and br; is a set of
bridge rules. Each such rule p is of the following form, where the left-hand side s is
called the head, denoted as hd(p), the right-hand side is called the body, also denoted
as body(p), and the comma stand for conjunction.
s<(c1:p1)s---,(¢j 1 pj),not (cjt1 :Pjt1)s- -, N0t (Cm : P )-

For each bridge rule included in context C; the head s can be any formula in L;. It is
required that kb; U s belongs to K By, and, for every k < m, cj, is a constant denoting
a context included in M (in the original definitions ¢y, is simply be an integer number
1 < n, though more expressive “names” can be used), and each p; belongs to some set
in Cnp,, i.e., it is a possible consequence of context c;’s knowledge base according
to the logic in which ¢y, is defined. The head s is any formula in L;, where however
kb;U{s} € KBy,. A relational MCS [10] is a variant where all the involved logics are
relational, and aggregate operators in database style are admitted in bridge-rule bodies.

A data state of MCS M is a tuple S = (S1,...,S,) such that for 1 < i < n,
S; € Cny,. Thus, a data state associates to each context a possible set of consequences.



Given data state S, app(.S) is the set composed of the heads of those bridge rules
which are applicable in S as their body is entailed by S; i.e., those such that for every
positive literal (¢; : p;) in the body, 1 < i < j, p; € S; and for every negative literal
not (c : pr) in the body, j + 1 < k < m, px, & Sk.

In managed MCSs (mMCSs)? the conclusion s, which represents the “bare” bridge-
rule result, becomes o(s) where o is a special operator. The meaning is that the result
computed by a bridge rule is not blindly incorporated into the “destination” context’s
knowledge base: rather, it is processed by operator o, that can possibly perform any
elaboration, such as format conversion, belief revision, etc.

More precisely, for given logic L, F, = {s € kb|kb € KBr} is the set
of formulas occurring in its knowledge bases. A management base is a set of op-
eration names (briefly, operations) O P, defining elaborations that can be performed
on formulas, e.g., addition of, revision with, etc. For a logic L and a management
base OP, the set of operational statements that can be built from OP and FJ, is
FOP = {o(s)|o € OP, s € F}. The semantics of such statements is given by a man-
agement function, which maps a set of operational statements and a knowledge base into
a modified knowledge base. In particular, a management function over a logic L and a
management base OP is a function mng : 2FL" x KBL — 2KBL \ 0. We assume
a management function to be deterministic, i.e., to produce a unique new knowledge
base. Each context in an mMCS has its specific management function mng;, which is
crucial for knowledge incorporation from external sources. Notice that each mng; can
be non-monotonic, i.e., it may imply deletion of formulas. Now, we can see a context as
C; = (eq; Ly; kbi; bri; OP;; mng; ) where ¢; is a constant acting as the context “name”
that, if omitted, is assumed to be integer number .

Desirable data states, called equilibria, are those which encompass bridge-rules ap-
plication. In fact in (m)MCSs equilibria are those data states .S where each S is accept-
able according to function AC'C); associated to L;, given that every applicable bridge
rule has indeed been applied. Formally, a data state S is an equilibrium for an MCS iff,
forl1 <i<mn,

S; € ACCi(mng;i(app(S), kbi)) (1)

Le., one (i) applies all C;’s bridge rules which are applicable in data state .S; (ii)
applies the management function which, by incorporating bridge-rule results into C;’s
knowledge base kb;, computes a new knowledge base kb}; (iii) determines via ACC;
the set of acceptable sets of consequences of kb.. In an equilibrium such set includes
S, i.e., an equilibrium is “stable” w.r.t. bridge-rule application.

Conditions for existence of equilibria have been studied [1], and basically require
cyclic application of bridge rules to be avoided. The complexity of deciding whether
some equilibrium exists depends upon composing contexts’ complexity, basically upon
the complexity of computing formula (1).

Algorithms for computing equilibria have recently been proposed [2, 11, 12]. Meth-
ods also exist [6] to detect and enforce MCS’s consistency, i.e., to ensure that an equilib-
rium does not include inconsistent data sets (local consistency) and that the composing

2 We introduce mMCSs in a simplified form with respect to [6]: in fact, they generalize from a
logic to a “logic suite”, where one can select the desired semantics among a set of possibilities,
while we define mMCS simply over logics.



data sets are mutually consistent (global consistency). It has been proved that local con-
sistency is achieved whenever all management functions are (Ic-) preserving, i.e., if they
always determine a kb’ which is consistent.

Bridge rules as defined in mMCSs are basically a reactive device, as a bridge rule
is applied whenever applicable. In dynamic environments, a bridge rule in general will
not be applied only once, and it does not hold that an equilibrium, once reached, lasts
forever. In fact, contexts may be able to incorporate new data items, e.g, as discussed
in [3] for Reactive MCSs (rMCSs), the input provided by sensors (“observations”).
Therefore, a bridge rule can be in principle re-evaluated upon new observations, thus
leading to evolving equilibria and to the notion of a “run” of an rMCS.

3 Motivating Scenario and Discussion

Some of the reasons of our interest in (m)MCSs and bridge-rules stem from a project
where we are among the proponents [13], concerning smart Cyber Physical Systems
with particular attention (though without restriction) to applications in the e-Health
field. The general scenario of such “F&K” (“Friendly-and-Kind”) systems is depicted
in Figure 1.
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We have a set of computational entities, of knowledge bases and of sensors, all im-
mersed in the “Fog” of the Internet of Everything. All components can, in time, join or
leave the system. Some computational components will be agents. In the envisaged e-
Health application for instance, an agent will be in charge of each patient. The System’s
engine will keep track of the present system’s configuration, and will enable the vari-
ous classes of rules to work properly. Terminological rules will allow for more flexible
knowledge exchange via Ontologies. Pattern Rules will have the role of defining and
checking coherence/correctness of system’s behavior. Bridge rules are the vital element,
as they allow knowledge to flow among components in a clearly-specified principled
way: referring to Figure 1, devices for bridge-rule functioning can be considered as a
part of the System’s engine. Therefore, F&Ks are “knowledge-intensive” systems, pro-
viding flexible access to dynamic, heterogeneous, and distributed sources of knowledge
and reasoning, within a highly dynamic computational environment. We basically con-
sider such systems to be (enhanced) mMCSs: as mentioned in fact, suitable extensions
to include agents and sensors in such systems already exist.

In the perspective of such kind of systems, the definition of (m)MCS recalled in
Section 2 is, though neat, quite abstract. Some limitations can be identified, that we list
below.

Grounded Knowledge Assumption. Bridge rules are by definition ground, i.e., they do
not contain variables. In [6] it is literally stated that [in their examples] they “use for
readability and succinctness schematic bridge rules with variables (upper case letters
and ’_’ [the 'anonymous’ variable]) which range over associated sets of constants; they
stand for all respective instances (obtainable by value substitution)”. Basic definition of
mMCS do not require either contexts’ knowledge bases or bridge rules to be finite sets.
Though contexts’ knowledge bases will in practice be finite, they cannot be assumed to
necessarily admit a finite grounding, and thus a finite number of bridge-rules’ ground
instances. This assumption can be reasonable, e.g., for standard relational databases
and logic programming under the answer set semantics [14]. In other kinds of logics,
for instance simply “plain” general logic programs, it is no longer realistic. In practi-
cal applications however, there should either be a finite number of applicable (ground
instances of) bridge-rules, or some suitable device for run-time dynamic bridge-rule in-
stantiation and application should be provided. The issue of bridge-rule grounding has
been discussed in [15] for relational MCSs, where however the grounding is performed
over a carefully defined finite domain, composed of constants only.

Logical Omniscience and Unbounded Resources Assumption. A bridge rule is supposed
to be applied whenever its body is entailed by the current data state. However, contexts
will hardly compute their full set of consequences beforehand. So, practical bridge rule
application will presumably consist in posing queries to other contexts which are sit-
uated somewhere in the nodes of a distributed systems. Each source will need time to
compute and deliver the required result, and might even never be able do so, in case of
reasoning with limited resources or of network failures.

Update Problem. Considering inputs from sensor networks as done in [3] is a starting
point: however, sources can be updated in many ways via the interaction with their envi-
ronment. For instance, agents are supposed to continuously modify themselves via the



interaction with the environment, but even a plain relational database can be modified
by its users/administrators.

Static system Assumption. The definition of mMCS might realistically be extended to a
setting where the set of contexts changes over time, maybe because some context gets
momentarily disconnected, or because components may freely either join or abandon
the system. Moreover inter-context reachability might be limited, e.g., via authoriza-
tions of some kind.

Full System Knowledge Assumption. A context might know the role of another context
it wants to query (e.g., a diagnostic knowledge base) but not its “name”, that could be,
for instance, its URI or anyway some kind of reference that allows for actually posing
a query.

Unique Source Assumption. In the body of bridge rules, each literal mentions a specific
context. In practice, that context might not be able to return a result while another
context with the same role instead might.

Uniform Knowledge Representation Format Assumption. Different contexts might rep-
resent similar concepts in different ways: this aspect is taken into account in [8], where
ontological definitions can be exchanged among contexts, and a possible global ontol-
ogy is also considered.

Equilibria Computation and Consistency Check Assumption. Algorithms for computing
equilibria are practically applicable only if open access to contexts’ contents is granted.
The same holds for local and global consistency checking. However, the potential of
MCSs is in our view that of modeling real distributed systems where contexts in general
keep their knowledge bases private. Therefore, in practice one will often just assume the
existence of consistent equilibria.

4 Proposed Extensions

Below we consider the points raised in previous section and provide, whenever not
already existing, related extensions/enhancements to the basic mMCS paradigm.

4.1 Grounded Knowledge Assumption

To the best of our knowledge, the problem of loosening the constraint of bridge-rules
groundedness has not been so far extensively treated in the literature. The issue has been
discussed in [15] for relational MCSs, where however the grounding of bridge rules is
performed over a carefully defined finite domain, composed of constants only. Instead,
we intend to consider any, even infinite, domain.

The procedure for computing equilibria that we propose for the case of non-ground
bridge rules is, informally, the following. (i) We consider an initial data state Sy com-
posed of finite sets; this is without loss of generality because, as seen below, it does not
actually limit the grounding to finite domains. (ii) We instantiate bridge rules over the
finite number of (ground) terms occurring in Sp; we thus obtain an initial finite ground-
ing relative to Sp; (iii) we evaluate whether Sy is an equilibrium, i.e., if Sy coincides
with the data state S resulting from applicable bridge rules. (iv) In case Sy is not an



equilibrium, bridge rules can now be grounded w.r.t. terms occurring in .Sy, and so on,
until either an equilibrium is reached, or no more applicable bridge rules are generated.

It is reasonable to start the procedure from a basic data state consisting of finite
ground instances of the initial contexts’ knowledge bases, obtained by substituting vari-
ables with constants. By definition, a ground instance of a context’s C; knowledge base
is in fact in C'n;, i.e., it is indeed a set of possible consequences, though in general it is
not acceptable. Notice that starting from a finite data state does not guarantee however
neither the existence of a finite equilibrium, nor that an equilibrium can be reached in a
finite number of steps.

Consider as an example an MCS composed of two contexts C; and C5, both based
upon plain logic programming and concerning the representation of natural numbers.
Assume such contexts to be characterized respectively by the following knowledge
bases and bridge rules (where C has no bridge rule).

%okby
nat(0).
%okbo

nat(suc(X)) «+ nat(X).
%b’l"g

nat(X) + (cl : nat(X)).

The unique equilibrium is reached in one step from basic data state Sy =

({nat(0)}, D) via the application of bro which “communicates” fact nat(0) to Cs. In
fact, due to the the recursive rule, we have the equilibrium (S, S2) where
S1 = {nat(0)} and Sz = {nat(0), nat(suc(0)), nat(suc(suc(0))),...})
L.e., Sz is an infinite set representing all natural numbers. If we assume to add a third
context C'3 with empty knowledge base and a bridge rule brs defined as nat(X) «+
(2 : nat(X)), then the equilibrium would be (S1, Ss,S3) with S3 = S,. There in
fact, br3 would be grounded on the infinite domain of the terms occurring in .So, thus
admitting an infinite number of instances.

The next example is a variation of the former one where C; “produces” the even
natural numbers (starting from 0) and C' the odd ones. There is clearly a unique equi-
librium, that cannot however be reached in finite time.

Yokby
nat(0).
%bT’ 1
nat(suc(X)) « (2 : nat(X)).
Yokbo
0
%bT 2
nat(suc(X)) < (cl : nat(X)).

We may notice that the contexts in the above example enlarge their knowledge by
means of mutual “cooperation”. Let us consider, according to our proposed method,
again the basic data state Sy = ({nat(0)},0).

As stated above, we ground bridge rules on the terms occurring therein. Sj is not an
equilibrium for the given MCS: in fact, the bridge rule in kbs, once grounded on con-
stant 0, is applicable but not applied. The data set resulting from the application, i.e.,



S" = ({nat(0)}, {nat(suc(o))}) is not an equilibrium either, because now the bridge
rule in kb; (grounded on suc(0)) is in turn applicable but not applied.

We may go on, as S” = ({nat(0), nat(suc(suc(0)))}, {nat(suc(o))}) leaves the
bridge rule in kb to be applied (grounded on suc(suc(0))), and so on. The unique
equilibrium, that cannot be reached in finite time, is composed of two infinite sets,
the former one representing the even natural numbers (including zero) and the latter
representing the odd natural number. The equilibrium may be represented as:

E = ({nat(0), nat(suck(0))), k mod 2 = 0}, {nat(suck(0)), kmod2 = 1})

We have actually devised and applied an adaptation to non-ground bridge rules of
the operational characterization introduced in [1] for the grounded equilibrium of a def-
inite MCS, as in fact (according to the conditions stated therein) C; and C are mono-
tonic and admit at each step a unique set of consequences, and bridge-rule application is
not unfounded (cyclic). In our more general setting the set of ground bridge rules asso-
ciated to given knowledge bases cannot be computed beforehand, and the step-by-step
computation must take contexts interactions into account.

Since reaching equilibria finitely may have advantages in practical cases, we show
below a suitable reformulation of the above example. We require a minor modification
in bridge-rule syntax: we assume in particular that whenever in some element the body
of a bridge rule the context is omitted, i.e., we have just p; instead of (¢; : p;), then
we assume that p; is proved locally from the present context’s knowledge base. Previ-
ous example can be reformulated as follows, where we assume the customary prolog’s
syntax, and prolog’s procedural semantics where elements in the body of a rule are
proved/executed left-to-right. The knowledge bases and bridge rules now are:

Yokby

nat(0).

count(0).

threshold(t).

%b’l‘l
new(nat(suc(X))) :- count(C), threshold(T),C < T, (c2 : nat(X))).
Yokbo
count(0).
threshold(t).
%b’l’g
new(nat(suc(X))) :- count(C), threshold(T),C < T, (cl : nat(X)).

In the new definition there is a counter (initialized to zero) and some threshold,
say t. We will exploit a management function that suitably defines the operator new
which is now applied to bridge-rule results. A logic programming definition of such
management function might be the following, where the counter is incremented and the
new natural number asserted. Notice that such definition is by no means not logical, as
we can shift to the “evolving logic programming” extension [16].

new(nat(2)) :- assert(nat(Z)), increment(C).
increment(C) :- retract(count(C)),
C1lis C + 1,assert(count(C1)).

Consequently, bridge rules will now produce a result only until the counter reaches
the threshold, which guarantees the existence of a finite equilibrium.



Below we formalize the procedure that we have empirically illustrated via the exam-
ples, so as to generalize to mMCS with non-ground bridge rules the operational char-
acterization of [1] for monotonic MCSs (i.e., those where each context’s knowledge
base admits a single set of consequences, which grows monotonically when informa-
tion is added to the context’s knowledge base). Following [1], for simplicity we assume
bridge-rules bodies to include only positive literals, and the formula s in its head o(s)
to be an atom. So, we will be able to introduce the definition of grounded equilibrium
of grade k. Preliminarily, in order to admit non-ground bridge rules we have to specify
how we obtain their ground instances, and how to establish applicability.

Definition 1. Let v € br; be a non-ground bridge rule occurring in context C; of a
given mMCS M with belief state S. A ground instance p of r w.r.t. S is obtained by
substituting every variable occurring inr (i.e., occurring either in the elements (c; : p;)
in the body of 1 or in its head o(s) or in both) via (ground) terms occurring in S.

For mMCS M, data state S and ground bridge rule p, let app"™ g(p, S) be a boolean
function which checks, in the ground case, bridge-rule body entailment w.r.t. S. Let
thus redefine bridge-rule applicability.

Definition 2. The set app(S) relative to ground bridge rules which are applicable in a
data state S of a given mMCS M = (C4,...,C,,) is now defined as follows.
app(S) = {hd(p) | p is a ground instance w.r.t. S of some

bridge rule r € br;,1 < i <mn,

and app':g(p, S) = true}

We assume, analogously to [1], that given mMCS is monotonic, which here means
that for each C;: (i) ACC; is monotonic w.r.t. additions to the context’s knowledge
base, and (ii) mng; is monotonic, i.e., it allows to only add formulas to C;’s knowledge
base. Let, for context C;, function ACC! be a variation of ACC; which selects one
single set F; among those generated by ACC;. Le., given context C; and knowledge
base kb € KBy, ACC!(kb) = E; where E; € ACC;(kb). Let oo be the first infinite
ordinal number isomorphic to the natural numbers.

Definition 3. Consider mMCS M = (C4, ..., C),) with no negative literals in bridge-
rule bodies, and assume arbitrary choice of function ACC for each composing context
C;. Let, for 1 < i < n, gr(kb;) be the grounding of kb; w.r.t. the constants occurring in
any kb;, 1 < j < n. A data state of grade k is obtained as follows.
Fori < mnanda =0, we let kb) = gr(kb;), and we let S* = SO = (kbY, ... kb0)
For each o > 0, we let S* = (S¢,...,8%) and S = ACC(kb$)
where for finite k and o > 0 we have

kbf”'1 = mng;(app(S%), kbY) if « < K,

kb2 = kb otherwise

while if k = 0o we have kb, = J,,q kb$

Differently from [1], the computation of a new data state element is provided here
according to mMCSs, and thus involves the application of the management function to



the present knowledge base so as to obtain a new one. Such data state element is then
the unique set of consequences of the new knowledge base, as computed by the ACC!
function.

The result can be an equilibrium only if the specified grade is sufficient to account
for all potential bridge-rules applications. In the terminology of [1] it would then be
a grounded equilibrium, as it is computed iteratively and deterministically from the
contexts’ initial knowledge bases. We have the following.

Definition 4. Let M = (C4,...,C,) be a monotonic mMCS with no negative literals
in bridge-rule bodies. A belief state S = (S1,...,Sy) is a grounded equilibrium of
grade k of M iff ACC.(mng;(app(S), kbF) = S;, for1 <i < n.

Several grounded equilibria may exist, depending upon the choice of ACCY. The
required grade for obtaining an equilibrium would be x = oo in the former version of
the example, where in the latter version if setting threshold ¢ we would have k = t. We
can state the following relationship with [1]:

Proposition 1. Let M = (C4,...,C,,) be a definite MCS (in the sense of [1]), and let
S = (S1,...,Sn) be a grounded equilibrium for M, reachable in ¢ steps. Then, there
exists a choice of function ACC. for each context C; of M such that S is a grounded
equilibrium of grade 6 for the mMCS M’ obtained from M by choosing, for i < n, a
management function mng; that just adds to kb; every s such that o(s) € app(S).

In an implemented mMCS, as remarked in [15], “...computing equilibria and an-
swering queries on top is not a viable solution.” So, they assume a given MCS to admit
an equilibrium, and define a query-answering procedure based upon some syntactic
restriction on bridge-rule form, and involving the application and a concept of “unfold-
ing” of positive atoms in bridge-rule bodies w.r.t. their definition in the “destination”
context. Still, they assume an open system, where every context’s contents are visible
to others (save some possible restrictions). We assume instead contexts to be opaque,
i.e., that contexts’ contents are accessible from the outside only via queries.

Also, we assume that bridge-rule application is not necessarily reactive but that, ac-
cording to a context’s own logic, other modalities of application may exist; for instance,
the modalities introduced in [7, 8] cope with “Logical Omniscience and Unbounded
Resources Assumption” by detaching (proactive) bridge-rule application from the pro-
cessing of the management function. Thus, in our case the grounding of literals in bridge
rule bodies w.r.t. the present data state will most presumably be performed at run-time,
whenever a bridge rule is actually applied. Such grounding, and thus the bridge-rule re-
sult, can be obtained for instance by “executing” or “invoking” literals in the body (i.e.,
querying contexts) left-to-right in prolog style. In practice, we can allow bridge rules to
have negative literals in their body. To this aim, we introduce a syntactic limitation in
the form of non-ground bridge rules very common in logic programming approaches,
i.e., we assume that (i) every variable occurring in the head of a non-ground bridge
rule v also occurs in some positive literal of its body; and (ii) in the body of such rule,
positive literals occur (in a left-to-right order) before negative literals.

So, at run-time variables in a bridge rule will be incrementally and coherently in-
stantiated via results returned by contexts. Each positive literal (¢; : p;) in the body



may fail (i.e., ¢; will return a negative answer), if none of the instances of p; given the
partial instantiation computed so far is entailed by ¢;’s present data state. Otherwise,
the literal succeeds and subsequent ones are instantiated to its results. Negative literals
not (c; : p;) make sense only if p; is ground at the time of invocation, and succeed if p;
is not entailed by ¢;’s present data state. In case either some literal fails or a non-ground
negative literal is encountered, the overall bridge rule evaluation fails without return-
ing results. Otherwise the evaluation succeeds, and the result can be elaborated by the
management function of the “destination” context. It is easy to prove that the invocation
of a bridge rule leads to success if and only if, given its ground instance obtained via
the above-specified evaluation pattern, the body is entailed by the present system’s data
state (which is hopefully an equilibrium) and thus the rule is applicable (according to
the previously-reported notions of applicability). We omit formal definitions and proofs
for lack of space. However, we may notice that asynchronous application of bridge rules
determine evolving equilibria.

4.2 Update Problem

In dynamic environments, contexts are in general able to incorporate new data items,
e.g, as discussed in [3], the input provided by sensors. We intend to explicitly take into
account not only sensor input, but more generally the interaction of contexts with an
external environment. As a premise we assume, similarly to what is done in Linear
Time Logic (LTL), a discrete, linear model of time where each state/time instant can
be represented by an integer number. States ¢p,¢1,... can be seen as time instants (or
’time points’) in abstract terms, though in practice we have ¢;,.1 — t; = &, where ¢ is
the actual interval of time after which we assume a given system to have evolved.

We assume then that each context is subjected at each time point to a (possibly
empty) finite update. Thus, for mMCS M = (Cy,...,C,,) let Il = (IIL, ... II%) be
a tuple composed of the finite updates performed to each module at time 7', where for
1<i:<n H% is the update to C;. Let I = I, Il5, ... be a sequence of such up-
dates performed at time instants 1, to, . ... Let us assume that each context copes with
updates in its own particular way, so let U;, 1 < 7 < n be the update operator that
module C; employs for incorporating the new information, and let i = {U1,...,U,}
be the tuple composed of all these operators. We assume Uf; to encompass all possible
updated performed to a module, included sensor input. So (analogously to the man-
agement function) let the update base uops; be a set of update operations which are
admitted on context C;. Then we have: U; : 2“°PS x K BL — 2KBr \ 0. Notice that
updates can be non-monotonic.

Consequently, we allow contexts’ knowledge bases and data states to evolve in time:
a timed data state at time 7T is a tuple ST = (ST,..., ST such that each S} is an
element of C'n; at time T. We assume the timed data state S° to be an equilibrium
according previous definitions. Later on however, transition from a timed data state to
the next one, and consequently the definition of an equilibrium, is determined both by
the update operators and by the application of bridge rules. An mMCS at time O is as
defined previously, while at time 7" 4 1 its knowledge base, and thus its data states and
equilibria, will have evolved, where also the notion of bridge-rule applicability is now
performed according to Definitions 1 and 2, but relatively to a timed data state S7.



Therefore, by letting, for each C; i < n, k:b? = kb; we have that

Definition 5. A timed data state of mMCS M at time T + 1 is an equilibrium iff, for
I<i<n,

Sz'TH € ACCi(mngi(apP(ST)7kbiTH))
where kb] 1 = U; (kb] | IT%).

The meaning is that an equilibrium is now a data state which encompasses bridge
rules applicability on the updated contexts’ knowledge bases. Notice that, in practice,
for each bridge rule applicable at time 7" the state when its result will actually affect the
destination context is in general unpredictable. In fact, contexts occurring in bridge-rule
bodies will require some amount of time for returning their results.

4.3 Static System and Full System Knowledge Assumption

A heterogeneous collection of distributed sources will not necessarily remain static in
time. New contexts can be added to the system, or can be removed, or can be mo-
mentarily unavailable due to network problems. Moreover, a context may be known by
the others only via the role(s) that it assumes or the services which it provides within
the system. Although not explicitly specified in the original MCS definition, context
names occurring in bridge-rule bodies must represent all the necessary information for
reaching and querying a context, e.g., names might be URIs. It is however useful for
a context to be able to refer to other contexts via their roles, without necessarily being
explicitly aware of their names. Also, a context which joins an MCS will not necessarily
make itself visible to every other context: rather, there might be specific authorizations
involved. These aspects may be modeled by means the following extensions:

Definition 6. A dynamic managed Multi-Context System (dmMCS) at time T is a set
MT = (Cy,...,Cp, Dir, Reach) of contexts where M = (C1,...,C,,) is an mMCS
and Dir and Reach are special contexts without associated bridge rules where:

— Dir is a directory which contains the list of the contexts, namely C1, . .., C,, par-
ticipating in the system at time T where, for each C;, its name is associated with its
roles. We assume Dir to admit queries of the form "role@Dir’, returning the name
of some context with role "role’, where ’role’ is assumed to be a constant.

— Reach contains a directed graph determining which other contexts are reachable
from each context C;. For simplicity, we may see Reach as composed of couples
of the form (C,., Cs) meaning that context Cy is (directly or indirectly) reachable
from context C,..

For now, let us assume that a query role@QDir = ¢ where ¢ € {C1,...,C,}, ie.,
returns a unique result. The definition of timed data state remains unchanged. Bridge
rule syntax must instead be extended accordingly:

Definition 7. Given a dnMCS (at time T) M™, each ( non-ground) bridge rule r in the
composing contexts C1, . .., Cy, has the form:
S < (Cl Ipl),...,(Cj ij),

not (Cj+1 : pj+1), ...,not (Cm : pm).
where for 1 < k < m the expression Cy, is either a context name, or an expression
role,,@Dir.



Bridge-rule grounding and applicability must also be revised. In fact, for checking
bridge rule applicability: (i) each expressions role;@QDir must be substituted by its
result and (ii) every context occurring in bridge rule body must be reachable from the
context where the bridge rule occurs.

Definition 8. Let M7T be a dmMCS (at time T') and ST be a timed data state for M.
Let v be a bridge rule in the form specified in Definition 7. The pre-ground version 1’
of T is obtained by substituting each expression roley@QDir occurring in the body of v
with its result cy, obtained from Dir.

Notice that 7/ is a bridge rule in “standard” form, and that r and ' have the same
head, where their body differ since in 7 all context names are specified explicitly.

Definition 9. Let v’ be a pre-ground version of a bridge rule r occurring in context C
of dmMCS M7 (at time T) with timed data state ST. Let p be a ground instance w.r.t.
ST of r'. We have now hd(p) € app(ST) if p fulfills the conditions for applicability
wrt. S T and, in addition, for each context C occurring in the body of p we have that
(C,C) € Reach.

The definition of equilibria is basically unchanged, save the extended bridge-rule
applicability. However, suitable update operators (that we do not discuss here) will be
defined for both Dir and Reach, to keep both the directory and the reachability graph
up-to-date with respect to the actual system state. The question may arise of where such
updates might come from. This will in general depend upon the application at hand: the
contexts might themselves generate an update when joining/leaving a system, or some
kind of monitor (that might be one of the composing contexts, presumably however
equipped with reactive, proactive and reasoning capabilities) might take care of such
task.

4.4 Unique Source Assumption

There might sometimes be the case where a specific context is not able to return a re-
quired answer, while another context with the same role instead would. More generally,
we may admit a query role@ Dir to return not just one, but possibly several results, rep-
resenting the set of contexts which, in the given dmMCS, have the specified role. So,
the extension that we propose in this section can be called a multi-source option. In par-
ticular, for dmMCS M7, composed at time T of contexts C1, ..., C,, the expression
rolex, @ Dir occurring in bridge rule r € br, will now denote some nonempty set SC,
C ({C4,...,Cn} \ {Cs}), indicating the contexts with the required role (where Cj is
excluded as a context would not look for itself). Technically, there will be now several
pre-ground versions of a bridge rule, which differ relative to the contexts occurring in
their body.

Definition 10. Let M7T be a dmMCS (at time T) and ST be a timed data state for M.
Let r € bry be a bridge rule in the form specified in Definition 7 occurring in context
C,. A pre-ground version ' of r is obtained by substituting each expression role;, Q Dir
occurring in the body of v with ¢ € SCl.



Bridge-rule applicability is still as specified in Definition 9, and the definition of
equilibria is also basically unchanged.

In practice, one may consider to implement the multi-source option in bridge-rule
run-time application by choosing an order for querying the contexts with a certain role
as returned by the directory. The evaluation would proceed to the next one in case
the answer is not returned within a time-out, or if the answer is under some respect
unsatisfactory (according to the management function).

A further refinement might consist in considering, among the contexts returned by
role@QDir, only the preferred ones.

Definition 11 (Preferred Source Selection). Given a query role@ Dir with result SC,
a preference criterion P returns a (nonempty) ordered subset SCT C SC.

Different preference criteria can be defined according to several factors such as trust,
reliability, fast answer, and others. Approaches to preferences in logic programming
might be adapted to the present setting: cf., among many, [3] and the references therein,
[17, 18] and [19, 19]). The definition of a context will now be as follows.

Definition 12. A context C; included in a dmMCS (except for Dir and Reach) is de-
fined as C; = (L;; kb;; bry; P;) where L;, kb; and br; are as defined before, and P; is a
preference criterion as specified in Definition 11.

5 Concluding Remarks

In this paper we have discussed and extended mMCSs, which are a general and power-
ful framework for modeling systems composed by several heterogeneous and possibly
distributed sources (contexts), that interact via so-called bridge rules. The proposed
extensions improve practical applicability of mMCSs by: making bridge rules more
general and flexible; introducing explicit time so as to model contexts’ updates and
consequent system’s evolution; introducing concepts of inter-context reachability and
contexts’ role, and preferences among reachable contexts with desired role. We believe
that implementations of mMCSs might profit from the enhancements that we have in-
troduced here.

Future work involves in fact the implementation as an mMCS of a smart Cyber-
Physical System in the e-Health domain for intelligent monitoring of patients with co-
morbidities [13]. This will allow us to experiment, refine and further develop the new
features.
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